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Evidence of indiscriminate fishing 
effects in one of the world’s largest 
inland fisheries
Peng Bun Ngor   1,2, Kevin S. McCann3, Gaël Grenouillet2, Nam So4, Bailey C. McMeans5, Evan 
Fraser3 & Sovan Lek2

While human impacts like fishing have altered marine food web composition and body size, the status 
of the world’s important tropical inland fisheries remains largely unknown. Here, we look for signatures 
of human impacts on the indiscriminately fished Tonle Sap fish community that supports one of the 
world’s largest freshwater fisheries. By analyzing a 15-year time-series (2000–2015) of fish catches 
for 116 species obtained from an industrial-scale ‘Dai’ fishery, we find: (i) 78% of the species exhibited 
decreasing catches through time; (ii) downward trends in catches occurred primarily in medium to 
large-bodied species that tend to occupy high trophic levels; (iii) a relatively stable or increasing trend in 
catches of small-sized species, and; (iv) a decrease in the individual fish weights and lengths for several 
common species. Because total biomass of the catch has remained remarkably resilient over the last 15 
years, the increase in catch of smaller species has compensated for declines in larger species. Our finding 
of sustained production but altered community composition is consistent with predictions from recent 
indiscriminate theory, and gives a warning signal to fisheries managers and conservationists that the 
species-rich Tonle Sap is being affected by heavy indiscriminate fishing pressure.

Globally, inland waters extend over an area of about 7.8 million km2 and are among the most biologically pro-
ductive and diverse ecosystems on earth1–3. Inland capture fisheries are important sources of food security, liveli-
hoods, and recreation for tens of millions of people worldwide4,5. Overall, inland fisheries employ approximately 
61 million people6 and represent 11.3% of the world total capture fish production7. These fisheries, however, are 
facing numerous challenges from human activities, namely, population growth, habitat degradation, hydrological 
changes, pollution, invasive species and climate change1,8–11.

Worries over the fate of inland waters12, along with the concern that higher trophic levels of marine food 
webs are being unsustainably exploited, have grown during the last decade. In particular, fisheries ecologists have 
recently argued that increased indiscriminate fishing pressure is reducing large-sized, slower-growing species 
with late maturity, and replacing them with smaller-sized, faster-growing species that mature earlier13–16. This 
leads to an overall reduction in the body size and, consequently, a reduction in the overall trophic level of the fish 
assemblage remaining in an ecosystem. Ultimately, these changes are expected to be reflected in catch compo-
sition12,17–20. Shifts through time in the slope of the catch-size spectra and decreases in the size of individual fish 
are also among the key structural and functional ‘signatures’ of indiscriminate fishing on the fish community21. 
Currently, however, much of the fisheries impact research has focused on marine systems and very little is known 
about freshwater fisheries in the sub-tropical and tropical environments such as the Mekong River Basin22,23. 
What limited evidence exists from inland tropical fisheries suggests declining catches, particularly in Asia and 
Africa where fish protein is of paramount importance in terms of food security. Hence, there are increasing calls 
in the literature that inland tropical fisheries should receive more research attention1,4,5,8.

This paper contributes to the literature on inland tropical fisheries, demonstrating that larger higher trophic 
level fish are being depleted in one of the world’s largest freshwater fisheries, while smaller, lower trophic levels 
organisms are increasing in a manner that sustains overall fish catches. Towards this, we study temporal dynamics 
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of 116 fish species in the Tonle Sap over 15 years. The Tonle Sap, at the whole fishery scale, has been shown to 
employ an amazing amount of fishing gears applied broadly across habitats and seasons in a manner that uni-
formly catches a high diversity of fishes (see13, Fig. 5). This approach is highly suggestive of a relatively indis-
criminate fishery. The dataset for the study was obtained from a standardized biological catch assessment of an 
industrial-scale ‘Dai fishery’ that operates during the dry season in the Tonle Sap River. We explore how temporal 
trends of fish catch captured by this fishery relate to each species’ maximum body size and trophic level. We also 
examine changes in the body weight and length of individual fish for select species over the assessment period.

Results
Summary of the fishery catch.  Over the 15-year assessment period, 141 fish species belonging to 12 
orders, 36 families and 93 genera were recorded. The four main orders, representing 90% of the total species 
counts were: Cypriniformes (59 species), Siluriformes (36), Perciformes (23) and Clupeiformes (7). The rest con-
tained one to three species in each order. Five families forming 95% of the total catch by weight were Cyprinidae 
(84%), Pangasiidae (4%), Cobitidae (4%), Siluridae (3%) and Cynoglossidae (1%). Three genera forming 66% 
of the total catch were Henicorhynchus (42%), Paralaubuca (12%), Labiobarbus (12%). Henicorhynchus con-
tained three species namely Henicorhynchus lobatus (17%), Henicorhynchus sp. (15%) (synonym of Lobocheilos 
cryptopogon and H. cryptopogon) and H. siamensis (10%); whereas, Paralaubuca encompassed only one species 
Paralaubuca barroni (synonym of P. typus), and finally, Labiobarbus consisted of two species: L. lineatus (10%) 
and L. siamensis (2%). By size category, 75% of catch was from species with maximum total length (maxTL) 
< = 30 cm, 9% with maxTL 31–60 cm, 9% with maxTL 61–90 cm and 6% with maxTL >90 cm. By trophic level, 
70% of catch was from species with trophic level < = 2.75, 27% with trophic level = 2.76–3.75 and 3% with 
trophic level >3.75. Ecologically, 82% of catch was longitudinal (riverine) migratory species, 17% was lateral-mi-
gration species, and about 1% is from a combination of estuarine, marine and floodplain resident species. For 
relative catch weight of 116 species captured by the Dai fishery, see Supplemental Information Fig. S4. We also 
found an overall declining trend in species diversity (evenness index) (see Fig. S5), signifying that fish community 
was highly unevenly distributed particularly between 2008 and 2015.

Temporal change in fish catch and relationship with maximum length and trophic level.  The 
distribution of the standardized regression coefficients for all 116 species, which reflected the nature of the rela-
tionship between seasonal fish catch and time for each species, was skewed to the right, centered around −0.4, 
and spread between −0.78 and 0.66 (Fig. 1). Out of the 116-total species, 90 (78%) had negative standardized 
regression coefficients. These results indicate that the seasonal catches of these species harvested by the Dai fish-
ery declined over the 15 years studied. On the contrary, there were also species (26 out of 116 or 22%) with 
positive standardized regression coefficients, indicating an increase in the catch of these species by the Dai fish-
ery. Interestingly, Oreochromis mossambicus is an exotic species that was among the largest positive coefficients 
observed. In addition, Labiobarbus lineatus, Henicorhynchus lobatus and H. cryptopogon (synonym of Lobocheilos 
cryptopogon) are all known to be highly prolific and form the largest proportion of the catch from the fishery. 
These species also had positive standardized coefficients (see Table S6 for standardized regression coefficients, 
maxTL and trophic level for each species). In fact, the increase in these species stabilized the seasonal Dai catches 
as it was evidenced in the total catch of the fishery which was stationary over the study period (p-value = 0.982, 
Fig. S8).

Species with declining catch in the Dai fishery were disproportionately represented by those with larger 
body sizes and higher trophic levels based on linear regressions (Fig. 2a,b), which demonstrated overall neg-
ative relationships between the log +1 transformed standardized regression coefficients and the correspond-
ing log-transformed maxTL (slope = −0.08, p-value = 0.08, r2 = 0.03), and trophic level (slope = −0.15, 

Figure 1.  Distribution of standardized regression coefficients of seasonal catches of 116 fish species recorded at 
the Dai fishery, Tonle Sap River from the fishing season of 2000/01 to 2014/15.
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p-value = 0.024, r2 = 0.04). In the regression model, five endangered and critically endangered species (solid 
points on Fig. 2a,b) were included. However, it was also likely that these species were very rare and, as such, their 
catches obtained in the catch assessment could be misleading. Therefore, when they were dropped from the anal-
ysis, the significant relationships were indicated with both maxTL (slope = −0.13, p-value = 0.006, r2 = 0.06) and 
trophic level (slope = −0.16, p-value = 0.02, r2 = 0.05).

When grouped by positive and negative standardized regression coefficient values (for all 116 species), maxTL 
was significantly greater for the species with negative standardized regression coefficients than the positive ones 
(Fig. 2c; Mann-Whitney rank sum test, p-value = 0.02). Negative values of standardized coefficients were noted 
for species with maximum length corresponding to >45 cm (3rd quartile), whereas positive standardized regres-
sion coefficients were noted for species with maxTL <25 cm (2nd quartile). Species with both negative and positive 
coefficient values fell within maxTL of ~25 cm and ~45 cm. Trophic level did not significantly differ between 
negative and positive standardized regression coefficients (Fig. 2d; Mann-Whitney rank sum test, p-value = 0.08). 
Nevertheless, species with negative standardized coefficients had higher trophic levels >3.3 (3rd quartile), and spe-
cies with positive standardized regression coefficients had lower trophic levels (<2.75). Species with both negative 
and positive coefficient values fell within trophic levels of ~2.75 and ~3.3. Furthermore, weighted mean maxTL 
and trophic level of seasonal total catch (Fig. 3a,b) oscillated with a mean range of ~25–55 cm and ~2.4–2.8, 
respectively, and significantly declined across the 15-year period (mean maxTL: slope = −1.26, p-value = 0.007, 
r2 = 0.44; mean trophic level: slope = −0.013, p-value = 0.025, r2 = 0.33). Although some small-bodied species 
including Parachela siamensis (maxTL: 18.3 cm; trophic level: 3.4), Parambassis wolffii (maxTL: 24.4 cm, trophic 
level: 3.72) and Acantopsis sp. cf. dialuzona (maxTL: 30.5, trophic level: 3.5) also exhibited significant declines in 
seasonal catches (standardized coefficients < −0.66), our combined findings indicate that smaller, lower trophic 
position species increased and compensated for declines in larger bodied, higher trophic position species in the 
Tonle Sap fishery over the study period.

Temporal change in weight and length of individual fish.  The log-transformed mean fish body 
weight captured per day in the Dai fishery significantly decreased over the study period for all 6-species explored 

Figure 2.  Relationship between (log +1 transformed) standardized regression coefficients of species 
composition derived from seasonal catches of 116 fish species recorded at the Dai fishery in the Tonle Sap 
River from the fishing season of 2000/01 to 2014/15, and (a) their corresponding log-transformed maximum 
total lengths (maxTL in cm) and (b) trophic levels. Solid points represent endangered (en) and critically 
endangered (ce) species. Dashed lines show linear regression lines to predict the relationships when all species 
are considered, and solid lines are linear regression lines when en and ce are excluded from (a) and (b). Model 
summary (a) when all species are included: slope = −0.08, p-value = 0.08, r2 = 0.03; and when en and ce 
are excluded: slope = −0.13, p-value = 0.006, r2 = 0.06. Model summary (b) when all species are included: 
slope = −0.15, p-value = 0.02, r2 = 0.04; and when en and ce are excluded: slope = −0.16, p-value = 0.02, 
r2 = 0.05. Boxplots show (c) distribution of maxTL and (d) trophic level for the positive and negative 
standardized regression coefficient values of all 116 species. Using Mann-Whitney rank sum tests for significant 
differences, p-values for (c) and (d) are 0.02 and 0.08, respectively.



www.nature.com/scientificreports/

4Scientific Reports |  (2018) 8:8947  | DOI:10.1038/s41598-018-27340-1

(p-value < 0.0001; Fig. 4; parameter estimates provided in Table S7). These species span a range in body size 
(large, medium and small) and regression coefficients indicated that individual fish weight consistently declined 
through time for all 6 species regardless of body size (Fig. 4a–f).

Violin plots further elucidated the temporal changes of the total length for four common species (Fig. 5). 
For the large- and medium-sized species Cyclocheilichthys enoplos (maxTL: 90.3 cm) and Cirrhinus microlepis 
(maxTL: 79.3 cm), both of which were mainly captured at juvenile sizes with the average total length <20 cm 
and 25 cm, respectively; body lengths have declined since the early 2000s when some comparatively large indi-
viduals (>30 cm) were present in the Dai fishery’s catches (Fig. 5a,b). Noticeably, the medians for these large and 
medium-sized species were significantly lower than 49 and 44 cm (Fig. 5a,b), the estimated lengths at maturity 
for C. enoplos and C. microlepis, respectively. For the smaller species (maxTL< 20 cm), H. lobatus and L. lineatus, 
which are common and highly productive, total length in the Dai catches had a median of ~9 cm, with some 
individuals possessing lengths greater than lengths at maturity which are ~12 cm for H. lobatus and ~10 cm for L. 
lineatus (Fig. 5c,d). Both species also exhibited gradual decrease in the median total length, but less pronounced 
than those of large-sized species.

Discussion
Trends in the seasonal catches of harvested species revealed that 78% of the 116-species are in decline. While we 
do not have fishery independent data to confirm the large Dai dataset, our results are consistent with the pre-
diction of an intensively exploited indiscriminate fishery. Consistent with indiscriminate fishing theory, a closer 
examination of the data indicated that the catch declines are disproportionally represented by the larger, slower 

Figure 3.  Weighted mean: (a) maximum total length (maxTL) and (b) trophic level in seasonal catches of 
the Dai fishery from the fishing season of 2000/01 to 2014/15. For model summary (a), intercept = 42.53, 
slope = −1.29, predictor p-value = 0.007, r2 = 0.44. For model summary (b), intercept = 2.74, slope = −0.013, 
predictor p-value = 0.025, r2 = 0.33. Pink shaded area denotes standard deviation around the mean values. 2001 
represents the fishing season of 2000/01 and the same for other years.
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growing, higher trophic level organisms of the Tonle Sap. By contrast, the 22% of species caught by the Dai fish-
ery that have tended to show increases are disproportionally represented by small-bodied, faster growing lower 
trophic level organisms. In addition, significant declines of the mean fish size and trophic level were evidenced 
in the seasonal catches of the fishery over the study period (Fig. 3a,b). Finally, the data consistently showed for 
common species spanning a range in adult body sizes that individual weights and lengths of all these species, even 
in many of the small-bodied species, have been significantly reduced over the last 15 years, a result that resonates 
with much research that has found that heavy fishing pressure is known to drive shifts in life history towards 
smaller sizes and earlier ages at maturation24. Our results also pointed out for select species that the number of 

Figure 4.  Linear regressions demonstrate temporal change in log-transformed mean individual weight (gram) 
by season of six common species, composing of large (a): Pangasianodon hypophthalmus, (b): Cyclocheilichthys 
enoplos; medium (c): Cirrhinus microlepis, (d): Osteochilus melanopleurus and small-sized species (e): 
Henicorhynchus lobatus, (f): Labiobarbus lineatus that possessed either negative (a–d) or positive (e,f) catch 
changes (expressed as standardized regression coefficients, Table S6) from the fishing season of 2000/01 to 
2014/15. See Table S7 for parameter estimates. All slopes were significant (p-value < 0.0001). Solid red dots 
indicate mean body weight and the pink shaded area denotes standard deviation for each survey season across 
the study period. 2001 represents the fishing season of 2000/01 and the same for other years.



www.nature.com/scientificreports/

6Scientific Reports |  (2018) 8:8947  | DOI:10.1038/s41598-018-27340-1

immature fish captured has increased throughout the study period. Moreover, a significant decreasing trend in 
species evenness was observed over the study period (Fig. S5). Thus, although this fishery has been amazingly 
resilient to changes in total fish harvest levels, these results collectively are in agreement with predicted effects of 
indiscriminate fishing theory. Because this theory ultimately predicts declines in fish catches and diversity with 
sustained, heavy indiscriminate fishing pressure13–15,25, our findings may be seen as an ‘early warning signal’ of 
looming negative impacts of indiscriminate fishing in the Tonle Sap.

Intriguingly, recent work has argued that such indiscriminately fished systems may generally occur in tropical 
systems where fish is the major source of animal protein26. Consistent with this conjecture, recent empirical fish-
eries data in the East China Sea15, where fish is also a major source of protein, has argued that this fishery is rela-
tively indiscriminate and has also showed a compensatory positive growth response by small fish to heavy fishing. 
Further, and consistent with our results, they argued that this compensatory response helped maintain fishery 
production21. This compensatory response is expected in indiscriminate fisheries as fishing effectively replaces 
slow growing larger, often higher trophic level fish, with faster growing smaller fish that tend to be from lower 
trophic levels13–16. This reduction of upper trophic level fish drives a cascading effect whereby released predation 
pressure allows lower trophic level species to flourish15. As shown in Fig. S8, CPUE (catch per Dai unit per day) in 
this large fishery fluctuated with no significant trend over the study period suggesting that the smaller fish growth 
rates are indeed compensating for reduction in upper trophic level catches. Given the reduction in mean body 
size and trophic level over time (Fig. 3a,b) as well as the average positive growth rates of small species (Fig. 1) our 
results suggest that small faster growing species are compensating for the heavy fishing pressure.

Our findings of declining catches of medium and large-sized species as well as falling mean body size of fish 
catches support general perceptions by fishers throughout the Lower Mekong Basin27–29. Our results, therefore, 
are consistent with existing knowledge that some giant- and large-sized fish populations in the Mekong region 
have declined since the 1900s. For example, the Mekong giant catfish (Pangasianodon gigas) (maxTL: 300 cm, 
max. weight: 350 kg), which was common and abundant in the 1900s, has almost disappeared from the Mekong 
River System28,30. Tonle Sap River is one of the last few places where a small number of individuals of this species 

Figure 5.  Violin plots show temporal shift in length distribution of four species (a): Cyclocheilichthys enoplos, 
(b): Cirrhinus microlepis; (c): Henicorhynchus lobatus; (d): Labiobarbus lineatus from the fishing season of 
2000/01 to 2014/15. Red solid line symbolizes median body size in each fishing season and grey thin lines 
indicate decile, dividing ten equal groups of a population. Area above the gray shaded area denotes estimated 
total length at maturity for each species. 2001 represents the fishing season of 2000/01 and the same for other 
years.
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are still occasionally captured30. In particular, the standardized regression coefficient for this species was almost 
zero (0.03), indicating little change in its contribution to the Dai catch since 2000. This perhaps reflects either 
effectiveness of conservation measures or that its population status is close to extinction. Likewise, the Mekong 
giant carp (Catlocarpio siamensis) (maxTL: 300 cm, max. weight: 300 kg) was seen regularly in the catch of 1938–
39 and 1962–6331,32. Nowadays, however, the Mekong giant carp has become critically endangered. Similarly, the 
Mekong shad (Tenualosa thibaudeaui) (maxTL: 60 cm) was still relatively abundant in the Dai catch in 1938–39 
and 1962–63 and used to be one of the most important species. Nonetheless, it too has been experiencing drastic 
decline during the last two decades33. The list of large-bodied species in decline goes on. Jullien’s golden carp 
(Probarbus jullieni) (maxTL: 183 cm, max. weight: 70 kg) was noticed as ‘comparatively scarce’ for at least 65 years 
in Thailand34, and together with Thicklipped barb (Probarbus labeamajor) were later observed to be very abun-
dant in 1970s in the southern Laos and northern Cambodia (when the region was at war). Both have declined, 
particularly since 1990s when the region’s border trade was re-opened up22,35 and now these two species are 
considered to be endangered by the IUCN Red List. Similarly, other formerly-common and high value species, 
including Cirrhinus microlepis (maxTL: 79.3 cm), have been assessed as a vulnerable species in the IUCN Red List. 
Based on our analysis, these giant- and large-sized species have all declined during 2000–2015.

The decline in the giant and larger-bodied species is likely associated with their slower growth and late age 
at maturation. For instance, both P. gigas and C. siamensis do not reach maturity until ~7 years of age36. These 
larger species often require large geographical ranges to complete their life cycles and undertake long migra-
tions between critical habitats33,37, making them more susceptible to capture before their first reproductive event. 
Given the increasing fishing pressure in the region, overfishing seems a likely cause of the decline observed in 
giant, large and medium sized fishes in the Tonle Sap, which is consistent with previously observed declines in 
long-lived, late spawning freshwater fish stocks such as the Murray River cod in Australia and ~21 sturgeon stocks 
across Asia, Europe and America and Pirarucu (Arapaima gigas) in Amazon38.

In contrast to large-bodied fish, the catch of some small-sized species such as Labiobarbus spp. (synonym 
of Dangila spp.) increased significantly over the study period. For instance, members of this genus accounted 
for ~5% of the Dai fishery catches between 1995 and 200028 but increased to 19% in 2013/14 fishing season39. 
Additionally, Henicorhynchus spp., which are ecologically important in the LMB35,40, made up 25.4% of the total 
Dai catch weight in 1962/6332 but increased to 40% between 1995 and 200028 and increased again to 43% in 
2013/14 fishing season39. Comparable increasing trends are also manifested for other small-sized cyprinids that 
are likely more robust to fishing pressure and also reproduce quickly on the vast area of seasonal flooded land 
every year13,15,27,33 once predatory pressures of higher trophic level fish28,33,41 are reduced.

While our results from the Tonle Sap revealed that overall declining catches were associated with large-bodied 
species, some small-sized species were also declining. These species feed in higher trophic levels (3.4–3.7) than 
some giant- and large-sized species such as the Mekong giant catfish (2.3) and Mekong giant carp (2.92) which 
are detritus and algae feeders. It is also likely that threat status of freshwater fishes was not as clear-cut as that of 
the marine fishes as evidenced in a study of extinction risk of European freshwater fishes where small-bodied 
species were most at-risk due to their small geographical ranges42. Likewise, when comparing fish body-size 
distribution under different global extinction risk levels, threats were found to disproportionately occur to both 
large- and small-sized species43. It is likely that further research on individual life history traits may help shed light 
on reasons of the decline, which is warranted because overfishing is not be the only threat to the Tonle Sap’s fishes.

Moreover, both increased efficiency of fishing gears and increased human population size have likely contrib-
uted to declining large-sized species in the Tonle Sap. In Cambodia, the use of monofilament nylon gillnets was 
to blame for the decline of C. microlepis, B. microlepis, Probarbus spp., T. thibaudeaui, P. hypophthalmus, Wallago 
leeri (maxTL: 150 cm) and Irrawaddy dolphins22,41,44 and were considered as a ‘wall-of-death’ for many migrating 
fishes29. The problems caused by these fishing techniques have likely been exacerbated by population growth and 
the population of countries sharing the Lower Mekong Basin has increased about threefold between 1960 and 
2015. Similarly, the Cambodia population has also grown almost threefold with ~85% rural dwellers45. Since entry 
into fishing is free, and fishing gears are very affordable,29,44 a combination of forces including rising population 
along with the lack of other livelihood options, has resulted in millions of people moving into the fishing sector 
thereby increasing fishing effort and pressure on fish stocks.

Further, hydropower development in the region also poses an increasingly large additional threat to the 
Mekong fisheries. Numerous hydropower developments loom over the Mekong Basin threatening to alter flows, 
fragment habitats, block fish migration routes from completing life cycles, degrade water quality and reduce the 
overall productivity of rivers resulting from nutrients and sediment losses. This is particularly troubling because 
the migratory species present in the Tonle Sap represent a third46 of the total number of fish species in the Mekong 
Basin from which some 877 fish species have been recorded9,47. In Cambodia, migratory species form 63% of 
catch by weight from Tonle Sap floodplains28 and up to 82% from Tonle Sap River (Result section).

The findings in this paper, for the first time, demonstrate evidence that the catches of the large- and 
medium-sized species in the Tonle Sap are declining while some small-sized, fast-growing species are increas-
ing and contributing to the maintenance of the Dai fishery’s overall catches in the past decades. This is akin to 
other notable indiscriminate fisheries such as that recently noted in the East China Sea where catches consisted 
of 1-year-old fish and the high exploitation level has been sustained for at least 10 fish generations15. This paper 
further demonstrates that even small-bodied species, so far capable of increasing their production on average, 
are showing significant reductions in body size with the consequence of an overall reduction in the percentage 
of mature individuals. This latter result is a warning signal to fisheries managers and conservationists that the 
species-rich Tonle Sap, so far able to maintain total harvest levels, may be close to its limit. The findings suggest 
that enhanced protection and conservation efforts are urgently needed to maintain food security in this region.

Fortunately, formal institutions for fisheries protection and conservation in Cambodia are now in place48 
with restrictions imposed on fishing seasons, gears and geographical areas (fish sanctuaries). Sufficient resource 
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allocation to the sector are therefore necessary to effectively enforce and monitor these fisheries regulations in 
order to protect and converse the fish biodiversity in the Tonle Sap, with the main aim to (1) let fish spawn at least 
for the first time before capture, (2) let fish grow and (3) let the mega-spawners live49. Tonle Sap River is specifi-
cally a natural passageway for many seasonal migratory fishes in the region. Setting appropriate regulations on the 
basis of known peak seasonal migrations during the inflow and outflow periods that allows some fishes (including 
endangered species) to pass through the river, would enable some juveniles and broodfishes to complete their 
life cycles, i.e. accessing the Tonle Sap floodplains and area south of Phnom Penh to feed, and the upstream of 
the Mekong mainstream and tributaries to seek dry-season refuge and breed37,50. Together with maintaining 
natural flow and hydraulic conditions for the longitudinal and lateral connectivity among these critical habitats 
that guarantee free migration routes for fishes are highly likely to be key drivers for the sustainability of the 
Tonle Sap fisheries. Further, the current formal fisheries management regime favors community-based fisheries 
co-management, where 516 community fisheries (CFis) including 228 in the Tonle Sap floodplains have been 
established countrywide51. Conservation priority should be given to the CFis situated in these key critical fish 
habitats. By effectively protecting and conserving these areas combined with appropriate hydraulic conditions, 
some juveniles and broodfishes may be maintained to sustain the seasonal reproduction, recruitment and growth. 
For future work, it is worth exploring a modelling approach which is able to suggest a management strategy that 
maximizes the present benefits from the Tonle Sap fishery while maintaining its long-term sustainability e.g.52.

Methods
Dai fishery.  This study used time series catch weight data of a standardized assessment on an industrial-scale 
‘Dai fishery’ between 2000 and 2015 (see also S1). The fishery seasonally operates between October and March in 
a specific location along the lower section of the Tonle Sap River, stretching about 4–30 km north of Phnom Penh. 
All Dai (64 units) are organized into 14 rows (referred to as row 2 to 15, with the most upstream row 15 situated 
closest to the Tonle Sap Lake; Fig. 6a) and operated singly or jointly of up to 7 units in a single row (Fig. 6b). A 
Dai unit can be uniquely identified through a combined alpha-numeric code of row number and the letter ‘A’ to 
‘H’ of each individual Dai in that row. For example, Dai 2 A indicates Dai A in row number 2. The transversal 
position of Dai rows within the river channel changes along up- and downstream axis (Table S2). In Row 2–4 and 
7, Dai is positioned towards the right bank (facing upstream) while row 13 and 14 are anchored more to the left 
bank, and the other units are positioned around the center of the river. Such positions of Dai row remain relatively 
unchanged for more than a century, with the aim to maximize catches dependent on local river morphology and 
hydrology53. Every Dai row is never broad enough to block the river, because by law, they have to leave space for 
navigation44,48.

Dai is a relatively indiscriminate fishing gear. The mesh sizes of the gear taper down from ~15 cm at the mouth 
to 1 cm at the codend. The Dai mouth is about ~25 m wide and its opening is determined by the water depth 
with the lower footrope (with chain) anchored at the river bottom and the upper rope on the water surface. The 
opening of the Dai mouth is maintained by the force of water current. The fishing gear is installed in the Tonle 
Sap River to filter fish that migrate out of the Tonle Sap floodplains back to the Mekong River during the dry 
season each year. Overall, the fishing effort of the Dai fishery (number of Dai units, gear dimensions, season 
of fishing and geographical location of the fishery) remains relatively constant over the study period, although 
some increases in hauling time have been reported during the peak migration periods53. Technical details of the 
Dai gear are described in44. Assuming that (1) the migration of fish from nearby floodplains to the between-Dai 
rows and (2) removals of fish by other small-scale fishing gears operating between Dai rows could be ignored, 

Figure 6.  Dai fishery in the Tonle Sap River: (a) location of Dais; (b) an aerial photo of a Dai row with seven 
units in operation. Map is created using ArcMap 10.2.2.
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the mean catch rate of the fishery has a general declining slope from row 15 down through row 2 (from closest 
to furthest away from the Tonle Sap Lake; Fig. 6a), indicating depletion response of fish population which is 
gradually removed from the system through cumulative Dai rows (fishing effort). Each Dai unit was predicted 
to remove 2.8% of migrating fish, and up to 83% of the fish arriving at row 15 were estimated to have captured by 
the 64 Dai units53.

Data collection.  Catch data from the Dai fishery were made available by the Fisheries Programme of the 
Mekong River Commission that technically and financially support the catch assessment programme. The catch 
of the fishery has been routinely assessed by the former Department of Fisheries (currently is the Fisheries 
Administration - FiA) and later by the Inland Fisheries Research and Development Institute (IFReDI) of the 
FiA in cooperation with its sub-national counterparts. General concepts and formula for assessing catches and 
catch composition are outlined in54, and these concepts were used to frame the sampling protocols and assessing 
catches of the fishery. The sampling unit was based on Dai unit and a randomly stratified sampling method was 
used for this paper. More specifically, Dai units were stratified based on (Fig. S3): (i) administrative space divided 
into two strata: Kandal Province (row 15–7 containing 42 Dai units) and Phnom Penh Municipality (row 6-2, 
containing 22 units), (ii) time based on the lunar period: Peak Period occurring in a time-window between 7–1 
days before full moon and Low Period, covering the rest of each month for the entire fishing season (iii) Dai 
types: High Catch Dai units (11 in Kandal and 6 in Phnom Penh) and Low Catch Dai units (31 in Kandal and 16 
in Phnom Penh). Relative locations of all Dai units within the Tonle Sap River is given in (Table. S2). Sampling 
on catches per haul or CPUE; including CPUE for species in catch composition and the daily number of hauls of 
a Dai unit were conducted in each stratum, lunar period and Dai type within each month of the fishing season 
for monthly catch estimate. Likewise, fishing effort (number of active Dai units and active days) were recorded 
according to the stratification framework throughout each fishing month over the whole fishing season across the 
study period. Sampling takes place around 17 days/month with intensive sampling (every day) during the Peak 
Period and every second or third day in the Low Period.

Catch Per Unit Effort or daily catch rate of the Dai unit (kg) is estimated as the product of sampled weight for 
haul, i and estimated number of hauls in a day53:

CPUE weight haul (1)dd mt st lu dt dai i mt st lu dt dai i dd mt st lu dt dai, , , , , , , , , , , , , , , ,= .

where dd = day, mt = month, st = stratum, lu = lunar period, dt = Dai type, dai = individual Dai unit, 
weight = weight of haul, and haul = estimated number of hauls in a day. Mean daily CPUE is based on mean daily 
catch samples per haul multiplying by the total number of haul per day. The estimated monthly catch for a given 
stratum, lunar period and Dai type, is as follows:

. . = × .Es Mt C CPUE Es FE (2)mt st lu dt m st lu dt mt st lu dt, , , , , , , , ,

where, Es.Mt.C = Estimated Monthly Catch, Es.FE = Estimated Fishing Effort. Estimated fishing effort is given by:

. = ×Es FE AD AG (3)mt st lu dt m st lu dt mt st lu dt, , , , , , , , ,

where AD is number of active (fishing) days and AG is number of active (fishing) gears for a given stratum, lunar 
period and Dai type. Additionally, estimated monthly species composition is computed as follows:

. . = × . .Es Mt Species SPE Es Mt C (4)mt st lu dt m st lu dt mt st lu dt, , , , , , , , ,

where Es.Mt.Species is Estimated Monthly Catch for a Species, SPE = a fraction of the total estimated catch cor-
responding to that species and is formulated from the proportion of that species found in the samples. The total 
catch estimated for a fishing season is the aggregation of the monthly catch estimated for that season.

Apart from sampling data on total catch for each species in each season, data were also obtained for the num-
ber, weight and length of some common and commercial individual fish caught per day of each fishing season. 
These species are among the most ecological, sociocultural (food nutrition and security) and economic important 
species in the region33,52,55. Therefore, they were used to examine the temporal changes in body weight and length 
for this study (see Figs 4 and 5). Further description of the sample sizes, sampling protocols, data collection forms 
on catch, species composition and fishing effort, the formula for catch estimation as well as the database system 
to store and manage the collected data of the fishery are given in detail by53.

The current Dai fishery database contains information on a total of 141 species. However, only 116 fish species 
were included in the analysis for this paper because data on the seasonal catches of the other species were sporadic 
throughout the time series. Furthermore, the species dropped from the analysis were quite marginal in terms of 
overall catch, and the total catch of the 25-fish species not included in this analysis only represented 0.38% of the 
total fishery’s catch recorded between 2000 and 2015. Of 116 species, the analysis includes 5 endangered and crit-
ically endangered species namely Probarbus jullieni, Probarbus labeamajor, Catlocarpio siamensis, Pangasianodon 
gigas and Pangasius sanitwongsei.

In addition to the Dai fishery datasets, data were also obtained on maxTL and trophic level of fish species 
in the Tonle Sap from FishBase56. Fish species classification and their ecological attributes were based on the 
Mekong Fish Database57, and are updated using FishBase56, in cross-checking with the Catalogue of Fishes Online 
Database as well as other literature including58,59.

Statistical analysis.  All data analyses were performed in R Programme60. Linear regression was used to 
predict the rate of change in the total catch weight of 116 fish species recorded at the Dai fishery between 2000 
and 2015. The temporal trend for each of the 116 species was expressed as a standardized regression coefficient to 



www.nature.com/scientificreports/

1 0Scientific Reports |  (2018) 8:8947  | DOI:10.1038/s41598-018-27340-1

allow comparison among species. Standardized regression coefficients measure the change in the dependent var-
iable resulting from a one-standard-deviation change in the independent variable61. In univariate linear regres-
sion, standardized regression coefficient equals the correlation coefficient (with its values varying between −1 
and +1), the intercept equals zero, and the positive and negative signs of standardized coefficients or regression 
weights (slope) indicates the kind of correlation between the variables62,63. Linear regressions, and the generation 
of standardized regression coefficients, were performed using the ‘lm’ function of ‘stats’ package and ‘lm.beta’ 
function of ‘QuantPsyc’ package60.

Histograms were used to visualize the distribution of standardized regression coefficient values of all spe-
cies. Simple linear regressions were used to explore the global trend of the relationships between standardized 
regressions coefficients and species’ maxTL and trophic levels (obtained through FishBase). For all regression 
analyses, normality was ensured by Shapiro tests (p-value > 0.05). Log +1 transformation was applied to nor-
malize the skewness of standardized regression coefficients prior to the linear regression analyses. In addition, 
weighted means of maxTL and trophic level in Dai catches by season were computed to examine trends of mean 
maxTL and tropical level across the 15-year study period. To explore temporal trends in the individual weights 
of the fish constituting the catch, the mean weight of all individuals captured per species per day was calculated 
and regressed against time. To deal with the data skewness, mean body weight was log-transformed before the 
analysis, and standard deviation for each species was also computed for each fishing season for the whole study 
period. This analysis was performed for six common species that spanned a range in standardized regression 
coefficient values (positive, zero, negative), body sizes and trophic levels, and included large- and medium-sized 
carps (Cyclocheilichthys enoplos, Osteochilus melanopleurus, and Cirrhinus microlepis), a large-sized river catfish 
(Pangasianodon hypophthalmus), as well as small-sized and highly productive mud carps (Henicorhynchus lobatus 
and Labiobarbus lineatus). Being ecological, sociocultural and economic important species, the six species belong 
to the first two largest families (Cyprinidae and Pangasiidae) forming the largest proportion of the total catches 
(84% and 4% respectively) from the Dai fishery. In addition, H. lobatus is an ecological keystone species, the most 
abundant species with its critical role in food security throughout the Lower Mekong Basin (including the Tonle 
Sap) and an important prey species for many predatory fishes and Irrawaddy dolphins64,65. Labiobarbus linea-
tus shares similar ecological characteristics with H. lobatus. From the Dai fishery, H. lobatus and L. lineatus are 
among the most dominant species contributing ~17% and 10% to the Dai’s total catch weight respectively. Finally, 
an attempt was also made to analyze the temporal changes in fish body length of the same six species (as we did 
with mean body weight). Given that, two of the six species (P. hypophthalmus and O. melanopleurus) contained 
relatively small sample sizes on length, only the other four species were included in the length frequency analysis. 
Nevertheless, the trends of the four species (Fig. 5a–d) still provide a good example of the status and trends of 
riverine fishes in the Tonle Sap and Lower Mekong Basin. Length frequency distributions of the four species were 
then examined across the study period using the ‘violins’ function from ‘caroline’ package in R66.
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